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Introduction 
 
Pediatric Sleep Disordered Breathing (SDB) encompasses a spectrum of respiratory disorders 
occurring during sleep, ranging from primary snoring to obstructive sleep apnea (OSA). These 
conditions are of significant concern due to their potential impact on children's physical health, 
cognitive development, and quality of life. The etiology of pediatric SDB is multifaceted, 
involving anatomical, neuromuscular, and genetic factors, highlighting the need for 
comprehensive diagnostic and predictive tools [2]. 
The Polygenic Score (PGS) Catalog offers a comprehensive repository of PGS across various 
health conditions and traits, including sleep disorders. These scores represent the cumulative effect 
of multiple genetic variants on an individual's trait or disease risk. The catalog facilitates 
comparison and validation of PGS across different studies and populations. Many of these scores 
are based on the UK Biobank. The UK Biobank is a large-scale biomedical database and research 
resource containing in-depth genetic and health information from half a million UK participants. 
This resource has been instrumental in numerous genetic studies, including those related to sleep 
disorders. However, its representation is predominantly of European ancestry, which may limit its 
applicability to diverse populations [3]. 
In this study, we propose to investigate the effectiveness of Polygenic Scores (PGS) for predicting 
Sleep Disordered Breathing (SDB) based on Adolescent Brain Cognitive Development (ABCD) 
study. Our preliminary analysis suggests that Single Nucleotide Polymorphisms (SNPs) data, 



derived from the NIDA NIH ABCD cohort, exhibit a superior predictive capability compared to 
those derived from the UK Biobank. 
 
Methods 
The Adolescent Brain Cognitive Development (ABCD) study, funded by the National Institute on 
Drug Abuse (NIDA) and the National Institutes of Health (NIH), represents the largest long-term 
study of brain development and child health in the United States [4]. This cohort provides 
invaluable data on genetic, neurobiological, behavioral, environmental, and social factors that 
influence health and disease outcomes, including SDB. The ABCD cohort's genetic data, 
especially SNPs suggestive of SDB risk, present a unique resource for developing predictive 
models [4]. The baseline performance of PGS Catalog scoring for SDB, primarily derived from 
the UK Biobank data, provides a foundational understanding of genetic predisposition to SDB. 
Leveraging the smokescreen panel for imputation of SNPs in diverse ancestries, including 
European and African, led to enhanced performance in custom PGS creation, surpassing baseline 
metrics provided by the PGS catalog. These improvements were quantitatively validated using the 
Mann Whitney U statistic to compare Receiver Operating Characteristic (ROC) curve Area Under 
the Curve (AUC) metrics. 
Results 
Our analysis reveals that custom PGS for SDB, developed using the ABCD cohort's suggestive 
SNPs and enhanced through imputation panels like the smokescreen and TopMed for various 
ancestries (top SNPs listed in Table 1) [5], significantly outperforms existing scores from the PGS 
catalog (Figure 1, European ancestries AUC = .54 vs .44, P = 9.7e-105, African Ancestries AUC = 
.56 vs .52, p = 0.00008, Other ancestries AUC = 0.64 vs .49, p value = 0.0009). This superiority 
was evident across European, African, and other ancestries, underscoring the importance of a 
diverse genetic database. The Mann Whitney U statistic's application in comparing ROC curve 
AUCs underscored the predictive accuracy of our custom PGS, highlighting the potential 
limitations of relying solely on data from populations of European descent. 
Discussion 
The observed predictive performance improvement suggests that pediatric SDB may be more 
significantly influenced by environmental than genetic factors, a hypothesis warranting further 
investigation. Future research should focus on integrating environmental and lifestyle variables 
with genetic data to enhance predictive models for SDB. This holistic approach could lead to more 
effective screening, prevention, and management strategies for pediatric SDB, ultimately 
improving health outcomes for affected children worldwide. 
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Figure 1. Manha.an plot and Receiver Opera8ng Characteris8c (ROC) Curves illustra8on. Panel a presents the Manha.an plot 

for Eastern European Ancestry, African Ancestry, and Other Ancestries, where each point represents a single nucleo8de 
polymorphism (SNP). To dis8nguish between SNPs of varying significance, two thresholds are introduced: a stringent 'significant' 

threshold (p-value = 5e-8, blue dashed line) for highly relevant SNPs, and a relaxed 'sugges8ve' threshold (p-value = 4e-6, red 
dashed line) to iden8fy SNPs that may have a poten8al associa8on with the trait under inves8ga8on. Panel b depicts the ROC 
curves for a logis8c regression model trained on each ancestry group within the valida8on dataset, alongside a comparison to 

exis8ng Polygenic Score (PGS) catalog results for snoring. The legend details the differences in the Area Under Curve (AUC) 
between our GWAS results and the PGS catalog, highligh8ng the predic8ve performance for each group. 
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Supplementary Materials  

GWAS of snoring trait in ABCD (Adolescent Brain Cognitive Development) dataset: We 
conducted a Genome-Wide Association Study (GWAS) on 5,720 participants before initiating 
genotype data quality control. This participant group was composed of 4,021 individuals 
identifying as White, 1,087 as Black, and 612 as belonging to other races. The ABCD study itself 
is a large-scale, forward-looking longitudinal study that is observing the developmental trajectory 
of approximately 12,000 young individuals, beginning at the ages of 9-10, over a span of ten years 
at 21 different research sites across the United States. The study has an extensive range of 
developmental aspects under its purview, which includes brain structure and function, social and 
emotional development, cognitive progression, mental health, substance use and perceptions, 
gender identity, sexual health, as well as a host of physical health and environmental factors. 

To ensure the integrity of our GWAS, stringent quality control measures were applied. We 
removed genetic variants such as single nucleotide polymorphisms (SNPs) with a minor allele 
frequency (MAF) below 1% and excluded any participant with more than 1% missing genotype 
data. Moreover, to mitigate the influence of linkage disequilibrium (LD) and to maintain the 
independence of the genetic variants under study, we utilized the PLINK software to exclude SNPs 
in high linkage disequilibrium (pairwise r^2 > 0.8). This step was critical to refine our dataset by 
eliminating closely correlated SNPs, thus reducing the possible confounding impact of LD on our 
genetic association findings. Subsequently, we performed GWAS focusing on the binary trait of 
snoring, categorizing the participants into non-snoring (control) and habitual snoring (case) 
groups. We employed generalized logistic regression analysis in Plinkv2 to achieve this. Our 
model was represented as y = GbG + XbX + e where  y  denoted the phenotype of interest, which 
in this study was the snoring status; G represented the matrix of genotypic data;  X  indicated the 
matrix of covariates; and e  symbolized the error term. To account for population stratification, the 
first ten principal components (PC1-PC10) were included as covariates in our analysis. 

 

Polygenic Risk Score for Our Implemented GWAS: Our approach to computing the Polygenic 
Risk Scores (PRS) entailed utilizing the Beta coefficients associated with each single nucleotide 
polymorphism (SNP) derived from the GWAS for each participant in the study cohort. The dataset 
was stratified by ethnic categories — Black, White, and Other — and further subdivided into 
training, validation, and testing subsets. We employed a logistic regression algorithm, training it 
on the designated training subset, and subsequently evaluating its performance on the validation 
and testing subsets. 



 
Figure 2. ROC curves for three groups in test dataset 


